Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mao-Lin Hu, ${ }^{\text {a }}$ * Nan-Wen Zhu ${ }^{\text {b }}$ and Hong-Ping Xiao ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and
${ }^{\mathbf{b}}$ School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

Correspondence e-mail:
maolin_hu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.142$
Data-to-parameter ratio $=11.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(aqua)bis(benzimidazole- κN)-bis(5-fluorouracil-1-acetate-кO)cobalt(II)

In the centrosymmetric molecule of the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Co}^{\text {II }}$ ion is coordinated by two 5-fluorouracil-1-acetate anions via carboxylate O atoms, two water molecules and two benzimidazole ligands, forming a six-coordinate octahedral environment. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions are observed in the structure, leading to the formation of a three-dimensional network.

Comment

5-Fluorouracil-1-acetic acid is a derivative of 5-fluorouracil $(5 \mathrm{FU})$ from the pyrimidine family of bases. It is a cytotoxic analogue of the natural base thymine, which has proved useful in the chemotherapy of a number of cancers, particularly colorectal cancer (Markova Venelin Enchev \& Timtcheva, 2005). Increasing attention has been paid to the anticancer activity of 5FU and its derivatives (Akgerman \& Guney, 2000), but only a few of their transition metal complexes have been reported so far (Wang et al., 1993). In an extension of this research, we report here the crystal structure of the title compound, (I).

Received 6 April 2005 Accepted 12 April 2005 Online 16 April 2005

The mononuclear molecule of (I) consists of a $\mathrm{Co}^{\mathrm{II}}$ ion, two coordinated water molecules, two 5-fluorouracil-1-acetate anions coordinated through carboxylate O atoms, and two
benzimidazole molecules. The $\mathrm{Co}^{\mathrm{II}}$ cation lies on an inversion anions coordinated through carboxylate O atoms, and two
benzimidazole molecules. The $\mathrm{Co}^{\mathrm{II}}$ cation lies on an inversion centre and the geometry around the $\mathrm{Co}^{\mathrm{II}}$ ion is octahedral (Fig. 1 and Table 1). The equatorial square plane is formed by atoms O1, $\mathrm{O} 1^{\mathrm{i}}, \mathrm{N} 3$ and $\mathrm{N} 3{ }^{\mathrm{i}}$ atoms [symmetry code: (i) $-x,-y$,
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1
The coordination environment of the $\mathrm{Co}^{\mathrm{II}}$ ion in (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms by $-x,-y, 1-z$.
$1-z$], and is essentially planar (r.m.s. deviation $0.0011 \AA$). The two axial sites are occupied by atoms O5 and O5 ${ }^{\mathrm{i}}$, with a $\mathrm{Co}-\mathrm{O}$ bond distance of 2.173 (3) \AA, longer than the average equatorial $\mathrm{Co}-\mathrm{O}$ bond distance of 2.081 (3) \AA.

Each molecule is linked to four adjacent molecules via N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions, to form a three-dimensional network (Fig. 2 and Table 2).

Experimental

The title compound was synthesized in a hydrothermal process from a mixture of benzimidazole ($2 \mathrm{mmol}, 0.24 \mathrm{~g}$), $\mathrm{CoCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1 mmol , 0.16 g), 5 -fluorouracil- 1 -acetic acid ($2 \mathrm{mmol}, 0.75 \mathrm{~g}$) and water $(20 \mathrm{ml})$ in a 30 ml Teflon-lined stainless steel reactor. The solution was heated to 421 K for 5 d . After the reaction, the system was slowly cooled to room temperature, and red crystals of (I) were collected and washed with distilled water.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}-\right.$	$Z=1$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$D_{x}=1.677 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=705.46$	Mo $K \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 2778
$a=7.368(13) \AA$	reflections
$b=8.368(14) \AA$	$\theta=2.6-24.9^{\circ}$
$c=12.07(2) \AA$	$\mu=0.70 \mathrm{~mm}^{-1}$
$\alpha=88.59(3)^{\circ}$	$T=298(2) \mathrm{K}$
$\beta=88.38(3)^{\circ}$	Block, red
$\gamma=69.92(3)^{\circ}$	$0.43 \times 0.33 \times 0.23 \mathrm{~mm}$
$V=699(2) \AA^{\circ}$	
Data collection	
Bruker APEX area-detector	2410 independent reflections
\quad diffractometer	2064 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.035$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-8 \rightarrow 8$
$T_{\text {min }}=0.752, T_{\text {max }}=0.855$	$k=-9 \rightarrow 9$
4448 measured reflections	$l=-14 \rightarrow 14$
Refinement	
Refinement on F^{2}	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$	H -atom parameters constrained
$w R\left(F^{2}\right)=0.142$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0997 P)^{2}\right]$
$S=1.06$	where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
2410 reflections	$(\Delta / \sigma)_{\max }<0.001$
214 parameters	$\Delta \rho_{\text {max }}=1.26 \mathrm{e} \AA^{-3}$
	$\Delta \rho_{\min }=-0.87 \mathrm{e} \AA^{-3}$

Figure 2
The three-dimensional network of (I), formed by hydrogen-bonding interactions, which are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Co1-O1	2.081 (3)	Co1-N3	2.125 (4)
$\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	2.081 (3)	$\mathrm{Co} 1-\mathrm{O} 5^{\text {i }}$	2.173 (3)
$\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{i}}$	2.125 (4)	Co1-O5	2.173 (3)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1^{\text {i }}$	180.00 (7)	$\mathrm{N} 3{ }^{\text {i }}-\mathrm{Co} 1-\mathrm{O} 5{ }^{\text {i }}$	90.65 (12)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 3^{\text {i }}$	86.88 (11)	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{O} 5^{\mathrm{i}}$	89.35 (12)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{i}}$	93.12 (11)	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 5$	90.38 (16)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 3$	93.12 (11)	$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Co} 1-\mathrm{O} 5$	89.62 (16)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 3$	86.88 (11)	N3 ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 5$	89.35 (12)
N3 ${ }^{\text {i }}-\mathrm{Co} 1-\mathrm{N} 3$	180.00 (4)	N3-Co1-O5	90.65 (12)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O}^{\text {i }}$	89.62 (16)	$\mathrm{O} 5{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 5$	180.000 (1)
O1 ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 5^{\text {i }}$	90.38 (16)		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H4 $\cdots \mathrm{O}^{\text {ii }}$	0.86	2.12	$2.905(5)$	152
${\text { O5-H5 } B \cdots{ }^{\text {iii }}}^{\text {ii }}$	0.82	2.07	$2.877(4)$	169

Symmetry codes: (ii) $x, y, z+1$; (iii) $x, y-1, z$.

H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{C} s p^{2}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}), \mathrm{Cs} p^{3}-\mathrm{H}=0.97 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}), \mathrm{N}-\mathrm{H}=$ $0.86 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$ eq with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$. The highest peak is located $0.94 \AA$ from atom Co1.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Wenzhou Technology Project Foundation of China (grant No. S2004A004), the Zhejiang Provincial Natural Science Foundation of China (grant No. Y404118) and the National Natural Science Foundation of China (grant No. 20471043).

References

Akgerman, A. \& Guney, O. (2000). J. Chem. Eng. Data, 45, 1049-1052.

metal-organic papers

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Markova Venelin Enchev, N. \& Timtcheva, I. (2005). J. Phys. Chem. A, 109, 1981-1988.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Wang, L. F., Yang, Z. Y., Peng, Z. R., Cheng, G. Q., Guo, H. Y., Sun, A. L., Wang, Q. \& He, F. Y. (1993). J. Coord. Chem. 28, 167-172.

